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U N C L A S S I F I E D 

Topics 

 Preliminary Discussion (Modeling 
Techniques) 

 

 Geometric Considerations 
• Vessel configuration 
• Solution height 
• Height-to-diameter ratio 
• Radiolytic gas holdup 

 Effects of Solution Chemistry 
• Concentration of fissile material 
• Water content 

 Negative Reactivity Feedback 
Mechanisms 
• Temperature of fuel 
• Radiolytic gas generated void 

 

 

 Dynamics 
• Startup and transition to steady-state; power 

oscillations  
• Stability and reactivity insertions 

 Auxiliary Systems 
• Gas handling 
• Fuel cooling 

 Summary 
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U N C L A S S I F I E D 

System Modeling 

 MCNP, Partisn used for variety of static data 

 Integrated System Modeling 
• Set of coupled nonlinear differential equations that may be solved in time to 

simulate the dynamics of the overall system. 
• Used for Experiment Planning and Authorization Basis for fast metal critical 

assemblies including Godiva High Energy Burst Machine at LANL TA-18 and 
Criticality Experiments Facility (CEF) at NTS/DAF for nearly 20 years. 

• System Model for SHEBA AHR was used for this purpose until decommissioning in 
2004 
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U N C L A S S I F I E D 

Stylized Fissile Solution System 

Cylindrical “bucket” partially filled with fissile solution 
(throughout presentation the term “bucket” refers to this 
simple configuration)  

• Void above solution 
• Fissile solution 
• Container 

The distinguishing characteristics of fissile 
solution systems are generally driven by the 
ability of the fuel to flow, change in volume 
and redistribute under a variety of forces. 
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U N C L A S S I F I E D 

Reactivity & Geometry – Solution Height 

Consider the following cylindrical “bucket” 
• Height to diameter ratio of 1:1 (choose 50 cm) 
• UO2SO4 LEU fuel 
• Stainless steel container 0.5 cm thick 

keff Height (cm) Volume (L) ∆ Height ∆ Volume 

1.00 50.00 98.17  

0.99 46.00 90.32 (4.00) (7.85) 

0.98 43.59 85.59 (6.41) (12.58) 

0.97 40.99 80.49 (9.01) (17.68) 

0.96 39.28 77.13 (10.72) (21.04) 

0.95 37.40 73.43 (12.60) (24.74) 

keff = 0.95 occurs 
at approximately 
75% of critical 
height or volume 

Solution height can be controlled to ±0.1 cm; hence, even at keff=0.99 the 
physical margin from critical is considerable and easily managed 
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U N C L A S S I F I E D 

Reactivity & Geometry – Height/Diameter Ratio 

Critical volume & height increases as H/D moves away from 1.00 in either direction 

H.C. Paxton & N. L. Pruvost 
“Critical Dimensions of 
Systems Containing 235U, 
239Pu, and 233U, 1986 
Revision”, LANL Report LA-
10860-MS (July 1967) 
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U N C L A S S I F I E D 

Power & Geometry – Radiolytic Gas Holdup 

7 

SUPO1 with Cooling Coils  
Baseline SUPO; $1.90 
• 24.90 kW 
• 64.18 ºC 
• 2.09% Void 
 
SUPO Without Impeding Coils 
(same coil dimensions and 
length but vertically strung) 
• 27.97 kW 
• 69.16 ºC 
• 1.44% Void 

Configurations impede transport of gas from core are less efficient 
 
      1SUPO operated at Los Alamos from 1954 to 1971 

System Model Results 
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U N C L A S S I F I E D 

Reactivity & Solution Chemistry 

gU/liter keff $/gU/liter 
134.47 1.01187 0.3005 
129.47 0.99992 
124.47 0.98720 -0.3246 

Uranium Concentration (19.75% Enriched) 

Time Start 1 hour 2 hours 3 hours 
keff 0.99992 1.00159 1.00792 1.01787 

Liters H2O Loss 2.12 4.24 6.36 
$/min 0.0035 0.0083 0.0123 
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Sensitivity to Uranium concentration ~±$0.30/g 

Effect of H-O recombiner and/or water makeup system malfunction (100 kW operation assumed)  

Effect is exponential increase with time 
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U N C L A S S I F I E D 

Reactivity & Temperature 
MCNP estimates of “bucket” model 

Effect Fuel Temp Density Volume (L) Height (cm) keff 

Density 90ºC 9.8910E-02 101.159 51.52 0.98656 

Cross sections 20ºC 1.0230E-01 98.175 50.00 0.99977 

Reactivity feedback factor 
due to fuel density 

Where β=0.00794 is the delayed neutron fraction, 70 is ∆T 
Result is -$0.0241 negative reactivity feedback per degree C 

Spectrum effects determined by replacing “.50c” cross sections with “.12c” cross sections 
and lwtr.01c S(α,β) with lwtr.02c (representing a temperature change of 100K). 

Result is -$0.0237 negative reactivity feedback per degree C 
 
Combined is an estimated -$0.0478 negative reactivity feedback due to temperature 
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Reactivity 
feedback 
factor due to 
cross section 
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U N C L A S S I F I E D 

Reactivity & Void 
Fission fragments in solutions decompose water into hydrogen and oxygen generating 
approximately 0.44 liters of gas per kilowatt per minute2. This “radiolytic” gas creates void in 
the solution fuel effectively reducing its density resulting in a negative reactivity feedback 
mechanism. Typical void by percent fuel volume is 1 – 3%.  
 
MCNP estimate of “bucket” model at 20ºC with 3% void is 0.99154. This is used in the equation below to 
compute the reactivity feedback (PHI20) at 20ºC 
 

Result is -$35.47 negative reactivity feedback per percent of void 
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2LA-2854, STATUS REPORT ON THE WATER BOILER REACTOR. Merle E. Bunker, February 1963 

Reactivity 
feedback factor 
due to gas void 
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U N C L A S S I F I E D 

Combined Effect of Temperature & Void 
Reactor Model Temperature ($/ºC) Void ($/fraction) 

“Bucket” -0.0478 -35.47 

SUPO -0.0344 -34.23 

KEWB “A-2” -0.0318 -44.57 

KEWB “B-5” -0.0554 -48.30 

Silene -0.0547 -72.83 

Effects combine: SUPO operating at 60ºC with 1.5% void had a total negative reactivity 
feedback due to temperature and void of (60-20)*(-$0.0344) + 0.015*(-$34.23) = -$1.89 
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• SUPO operated at Los Alamos 
• KEWB reactors operated at North American 
• Silene operated at Valduc, France  
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U N C L A S S I F I E D 

Dynamics – Startup & Transition to Steady-State 
System Model of SUPO with $1.90 
excess reactivity (normalized scale) 
 
Experimental Data 
• 25 kW 
• 75ºC fuel temperature 
• 35ºC outlet coolant temperature 

Fuel T: 73.1ºC 

Radiolytic gas void 
fraction: 1.5% Power: 24.8 kW 

Coolant outlet 
T: 32.4ºC Reactivity O saturates 

H saturates 

Power drops 
Due to Temperature 
Due to H gas void 
Due to O gas void 

Reactivity drops 
due to H & O 
gas void 

Reactivity drop due 
to temperature 
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U N C L A S S I F I E D 

Dynamics – Power Oscillations at Steady-State 
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( Taken from SHEBA Run 11/9/95)

FIGURE 2
Oscillations at “Steady State” in Sheba 2

Data provided by Charlene Cappiello

Lessons Learned from 65 Years of Experience with 
Aqueous Homogeneous Reactors; Cappiello, Grove, 
& Malenfant, LA-UR-10-02947 

Typical oscillations due to radiolytic gas formation and transport 
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U N C L A S S I F I E D 
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Dynamics – Stability 

An aqueous homogeneous reactor (AHR) initially at steady-state re-establishes a 
new steady-state condition on its own following a reactivity perturbation 
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• No sustained reactivity oscillations 
• Small oscillation about critical 
• Quick reactivity feedback 
• Reactor’s physical response very mild 
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U N C L A S S I F I E D 

Dynamics – Response to Rate of Reactivity Insertion 

Rate ($/sec) kW max Time of Peak (sec) 

0.01 122 79 

0.1 1,038 11.3 

1.0 20,068 1.75 

10.0 31,008 0.51 

Total inserted reactivity: $1.90 (KEWB A-2 Model) 
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Power & Gas Dynamics Detail for $1.0/sec 

Episodic power follows gas fluctuations 

Radiolytic Gas     Power 
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U N C L A S S I F I E D 

Auxiliary System Effects – Gas Handling (SUPO Example) 

T (min) P (atm) kW T (ºC) Void (%) 

0.0 0.80 24.90 64.18 2.09 

10 2.38 26.95 67.52 1.66 

20 5.14 28.26 69.61 1.39 

30 9.28 29.17 71.06 1.21 

40 14.79 29.83 72.10 1.07 

50 21.69 30.33 72.88 0.97 

60 29.97 30.73 73.50 0.89 

Clogged plenum doubles pressure 
approximately every 10 minutes 

Clogged Plenum Diminished Cover Gas Flow 
Flow (%) kW T (ºC) Void (%) 

100 24.90 64.18 2.09 

75 24.90 64.18 2.09 

50 24.90 64.19 2.09 

25 24.92 64.22 2.08 

0 26.65 67.03 1.72 
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Loss of flow reduces pressure above solution 
allowing more rapid gas release 

Pressure in plenum is governed by cover gas flow 
and exit of radiolytic gas escaping fuel surface 
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U N C L A S S I F I E D 

Auxiliary System Effects – Cooling Water (SUPO Example) 

Inlet T (ºC) kW T (ºC) Void (%) 

5 24.90 64.18 2.09 

10 23.01 65.16 1.96 

15 21.15 66.15 1.83 

20 19.31 67.17 1.70 

25 17.50 68.20 1.57 

Coolant inlet Temperature 
Flow (%) kW T (ºC) Void (%) 

200 28.47 62.41 2.32 

175 27.91 62.68 2.29 

150 27.20 63.03 2.24 

125 26.24 63.50 2.18 

100 24.90 64.18 2.09 

75 22.88 65.23 1.95 

50 19.55 67.04 1.72 

25 13.18 70.78 1.23 

0 0.28 88.04 0.03 

% Coolant Flow 
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System maintains thermal energy 
balance between heat of fissions 
and extraction by cooling system 
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U N C L A S S I F I E D 

Summary – Characteristics of Fissile Solution Systems 

 Ability of fuel to flow rapidly during operation due to thermal forces and 
radiolytic gas dynamics drives the physics of these systems 

 Exhibit high negative reactivity feedback due to fuel temperature increase and 
radiolytic gas generated void (both decrease fuel density) 

 Are well-damped systems and bounded reactivity excursions result in bounded 
(new) steady-state operating condition 

 Very docile and slow to respond due to long neutron lifetime and high thermal 
inertia of the fuel (specific heat of fuel is an order of magnitude greater than 
solid fuels). 

 Operation requires large excess reactivity to be available ($5.00 or more) 

 Sensitive to auxiliary systems such as cooling water, gas handling, and water 
makeup; small changes can have large effects due to the large feedbacks 
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